References

Publications

[P1]

Jan Ellmenreich, Matteo Giacomini, Antonio Huerta, and Philip L. Lederer. Characteristic boundary conditions for Hybridizable Discontinuous Galerkin methods. March 2025. arXiv:2503.19684, doi:10.48550/arXiv.2503.19684.

Literature

[1]

Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability-preserving high-order time discretization methods. SIAM review, 43(1):89–112, 2001. doi:10.1137/S003614450036757X.

[2]

Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri. Implicit-explicit runge-kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics, 25(2-3):151–167, 1997. doi:10.1016/S0168-9274(97)00056-1.

[3]

Charles Hirsch. Numerical Computation of Internal and External Flows. 2: Computational Methods for Inviscid and Viscous Flows. A Wiley Interscience Publication. Wiley, Chichester, repr edition, 2002. ISBN 978-0-471-92452-4 978-0-471-92351-0.

[4]

Jaime Peraire, Ngoc Nguyen, and Bernardo Cockburn. A Hybridizable Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, January 2010. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2010-363.

[5]

Jordi Vila-Pérez, Matteo Giacomini, Ruben Sevilla, and Antonio Huerta. Hybridisable Discontinuous Galerkin Formulation of Compressible Flows. Archives of Computational Methods in Engineering, 28(2):753–784, March 2021. doi:10.1007/s11831-020-09508-z.

[6]

Alireza Najafi-Yazdi and Luc Mongeau. A low-dispersion and low-dissipation implicit runge–kutta scheme. Journal of computational physics, 233:315–323, 2013. doi:10.1016/j.jcp.2012.08.050.

[7]

David I Ketcheson, Benjamin Seibold, David Shirokoff, and Dong Zhou. Dirk schemes with high weak stage order. Spectral and High Order Methods for Partial Differential Equations, pages 453, 2020. doi:10.1007/978-3-030-39647-3_36.

[8]

Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II. Volume 375. Springer Berlin Heidelberg New York, 1996. doi:10.1007/978-3-642-05221-7.

[9]

E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Dordrecht ; New York, 3rd ed edition, 2009. ISBN 978-3-540-25202-3 978-3-540-49834-6.